

PROGRAMA CÁLCULO DE TANQUE DE **ARMAZENAMENTO**

Stenio Monteiro de Barros

RESUMO

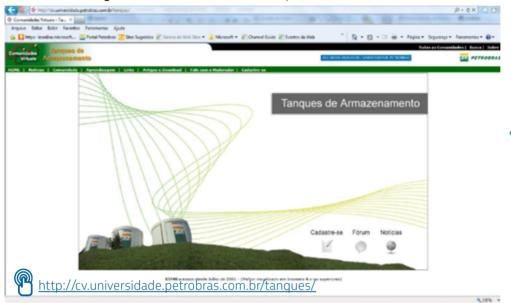
O Cálculo de Tanque de Armazenamento (CTA) é um conjunto de programas computacionais desenvolvido para a comunidade técnica Petrobras na área de Equipamentos Estáticos - Caldeiraria e Tubulações. Atualmente, o CTA apresenta as seguintes possibilidades de cálculo: Costado: dimensionamento do costado de um tanque de armazenamento pela norma API 650; Vento: determinação da carga de vento suportada por um tanque de armazenamento; API 653: análise da integridade do costado de um tanque de armazenamento conforme norma API 653: ESMINOP: determinação da espessura mínima operacional do fundo, costado e teto de um tanque de armazenamento.

Palavras-chaves: Tanque de armazenamento. Projeto do costado. Carga de vento. Anel de contraventamento intermediário. Tombamento. Integridade estrutural. Espessura mínima operacional. Vida útil.

ABSTRACT

The Calculation of Storage Tanks (CTA) is a set of computer programs developed for the Petrobras technical community in the area of Static Equipment – Storage Tanks, Vessels and Pipes. Currently, the CTA offers the following possibilities of calculation: Shell: shell design of a storage tank according to Standard API 650; Wind: wind load determination supported by a storage tank; API653: tank shell evaluation of a storage tank according to Standard API 653; ESMINOP: determination of the minimum acceptable operational thickness of a storage tank: bottom, shell and roof plates.

Keywords: Storage tank. Shell design. Wind load. Intermediate stiffening ring. Overturning stability. Structural integrity. Minimum acceptable thickness. Suitability for service.



1 INTRODUÇÃO

Desde 1971, estamos desenvolvendo programas computacionais para cálculo de Tanques de Armazenamento de petróleo e derivados. Atualmente, os quatro principais programas foram incorporados num pacote que denominamos Cálculo de Tanque de Armazenamento (CTA).

O programa CTA está disponibilizado, para a Comunidade Técnica Petrobras, no Portal Petrobras, Comunidades Virtuais: Tanques de Armazenamento (Tarja Aprendizagem), conforme ilustrado nas Figuras 1 e 2.

Figura 1 – Comunidades Virtuais: Tanques de Armazenamento.

Fonte: PETROBRAS, 2015.

Figura 2 – Tela Inicial do programa CTA.

Fonte: PETROBRAS, 2015.

O programa CTA apresenta, atualmente, as seguintes opções de cálculo:

- o Costado: dimensionamento do costado de tanques de armazenamento pela norma API 650 e atendendo às exigências da norma Petrobras N-270:
 - Anexo A:
 - ♦ Corpo de Norma:
 - Método do Ponto Fixo;
 - Método do Ponto Variável:
 - Cálculos Independentes (Projeto e Teste Hidrostático):
 - Aproveitamento integral da espessura comercial da chapa utilizada.
- Vento: determinação da carga de vento suportada por um tanque de armazenamento (Figura 3) em gualguer momento de sua operação (vazio / novo ou corroído):
 - Verificação da necessidade de anel de contraventamento intermediário (Figura 4);
 - ♦ Verificação do risco de tombamento.
- API653: análise da integridade estrutural de um costado localmente corroído conforme norma API 653;
- ESMINOP: determinação da espessura mínima operacional do fundo, costado e teto de um tanque de armazenamento. Estimativa da vida útil para o equipamento.

Figura 3 – Deformação do costado por carga de vento.

Fonte: BARROS, 2015, p. 419.

Figura 4 – Anel de contraventamento e anel de contraventamento intermediário.

Fonte: BARROS, 2015, p. 262.

2 EXEMPLOS DE APLICAÇÃO DO CTA

Mostraremos inicialmente, como exemplo ilustrativo do CTA, na opção Costado, o dimensionamento do maior tanque de armazenamento atualmente construído na Petrobras (Figuras 5 a 7).

Dados de Projeto do Equipamento:

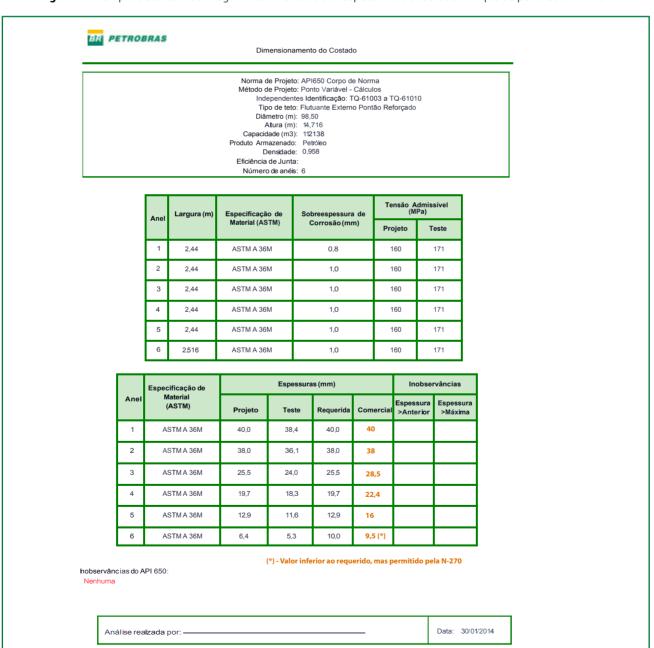
- Localização: Refinaria do Nordeste Abreu e Lima (RNEST);
- Norma de projeto: API 650 Corpo de Norma;
- Método de projeto: Ponto Variável Cálculos Independentes;
- o Identificação: TQ-61003 a TQ-61010;
- Tipo de teto: Flutuante externo pontão reforçado;
- o Diâmetro: 98,5 m
- o Altura: 14,716 m
- Capacidade nominal: 112 138 m³;
- Produto armazenado: Petróleo;
- Densidade do produto: 0,958 (Petróleo Carabobo);
- Eficiência de junta soldada: 1;
- Número de anéis do costado: 6;
- Largura das chapas de cada anel do costado: 2,44 m;
- Especificação de material das chapas do costado: ASTM A 36M;
- Sobre-espessura para corrosão: 0,8 mm (1º anel do costado); 1,0 mm (demais anéis do costado);
- Cantoneira de topo do costado: 75 mm x
 75 mm x 10 mm (3 in x 3 in x 3/8 in);
- Sistema internacional de unidades.

Figura 5 – Parque de tancagem de petróleo da RNEST.

Fonte: BARROS, 2015, p. 634.

Figura 6 – Tanque de petróleo da RNEST.

Fonte: BARROS, 2015, p. 634.


O arquivo em PDF gerado neste dimensionamento está reproduzido na Figura 7.

É importante salientar, neste dimensionamento, que a espessura requerida ao primeiro anel do costado é de 40 mm, máximo valor permitido por norma para a especificação ASTM A 36M adotada: aço-carbono estrutural tipicamente utilizado,

atualmente, em tanques de armazenamento.

Assim, para os dados de projeto fixados pela Engenharia da Petrobras, poderemos considerar este equipamento como o maior tanque de armazenamento possível de ser construído atendendo os requisitos normativos

Figura7 – Exemplo de cálculo do Programa CTA. Cálculo das espessuras do costado. Tanque de petróleo da RNEST.

Fonte: PETROBRAS, 2014.

Utilizando a opção ESMINOP do CTA, poderemos calcular as espessuras mínimas operacionais (Figura 8) deste tanque de armazenamento considerando os seguintes dados fixados pelo órgão de operação do equipamento:

• Produto armazenado de maior densidade: Petróleo Marlim Sul:

- Densidade do produto: 0,956;
- o Altura Máxima de Utilização (AMU): 14,0 m;
- Tensões admissíveis pelo API 653: 172 MPa (1° e 2° anel do costado); 189 MPa (3° ao 6° anel do costado)

Figura 8 – Exemplo de cálculo do Programa CTA. Cálculo das espessuras mínimas operacionais. Tanque de petróleo da RNEST.

BR PETROBRAS

Cálculo da Espessura Mínima Operacional - ESMINOP

Identificação: TQ-61003 a 61010

Localização: RNEST Serviço: Petróleo

Tipo de Teto: Flutuante Externo Pontão Reforçado

Norma de Proieto: API 650 Método de Projeto: Ponto Variável Diâmetro (m): 98,50 Altura (m): 14,72

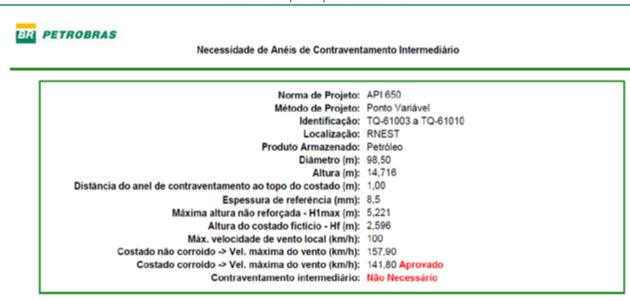
Capacidade (m3): 112183 Densidade de Projeto: 0,958 Número de meses de Operação: 0 Densidade do produto Armazenado: 0,956 Altura Máxima de Utilização (m): 14,00

Método de Cálculo: Ponto Variável

A I	Largura (m)	Eficiência de Junta	Fanadisa a da Matadal	Tensão	Espessuras (mm)	
Anel			Especificação de Material	Admissível (MPa)	Fabricação	Mínima
N1	2,44001	1,00	ASTM A 36M	172,00	40,0	34,69
N2	2,44001	1,00	ASTM A 36M	172,00	38,0	32,06
N3	2,44001	1,00	ASTM A 36M	189,00	28,5	19,36
N4	2,44001	1,00	ASTM A 36M	189,00	22,4	14,22
N5	2,44001	1,00	ASTM A 36M	189,00	16,0	8,48
N6	2,51601	1,00	ASTM A 36M	189,00	9,5	3,05

Local	Espessura de Fabricação (mm)	Espessura Mínima Operacional (mm)
Teto	4,75	2,5
Fundo: Chapas recortadas	6,3	2,5
Fundo: Chapas anulares	12,5	6,858

Análise realizada por: Data:	06/02/2014
------------------------------	------------


Fonte: PETROBRAS, 2014.

Utilizando a opção Vento do CTA, poderemos calcular a máxima velocidade de vento que este tanque de armazenamento poderá ser submetido (vazio / novo ou corroído) sem a

ocorrência das seguintes condições:

- Deformação no costado (Figura 9);
- Tombamento do equipamento (Figura 10).

Figura 9 – Exemplo de cálculo do Programa CTA. Cálculo da máxima velocidade de vento suportada sem risco de deformação no costado. Tanque de petróleo da RNEST.

Segmento do Costado	Largura (m)	Espessura (mm	Sobreespessura de Corrosão (mm	LFictício (m)
N6 - Abaixo do Anel de Contraventamento	1,516	9,500	1,0000	1,516
N5	2,44	16,000	1,0000	0,590
N4	2,44	22,400	1,0000	0,243
N3	2,44	28,500	1,0000	0,130
N2	2,44	38,000	1,0000	0,062
N1	2,44	40,000	0,8000	0,053

Análise realizada por:		Data: 03/02/2014
------------------------	--	------------------

Fonte: PETROBRAS, 2014.

Conforme podemos observar no cálculo, este tanque poderá ser submetido a uma velocidade de vento máxima de 141.8 km/h

(vazio e corroído) sem risco de deformação no costado.

Figura 10 – Exemplo de cálculo do Programa CTA. Cálculo da máxima velocidade de vento suportada sem risco de tombamento. Tanque de petróleo da RNEST.

Risco de Tombamento

Identificação: TQ-61003 a TQ-61010

Localização: RNEST Norma de projeto: API 650 Método de projeto: Ponto Variável Produto armazenado: Petróleo **Diâmetro (m):** 98,50

Altura (m): 14,716 Máx. velocidade de vento local (km/h): 100

Velocidade do vento para risco de tombamento (km/h)

Costado não corroído -> Max. Vel. do vento (km/h): 911,50 Costado corroído -> Max. Vel. do vento (km/h): 894,30

Sem risco de tombamento

Segmento do Costado	Largura (m) Espessura (mm	Sobreespessur	Peso Estimado Costado (kg)		
Degmento do Obstado		Lapesaura (IIIII	a de Corrosão	Não Corroído	Corroído
N6	2,516	9,500	1,0000	58067	51955
N5	2,44	16,000	1,0000	94850	88921
N4	2,44	22,400	1,0000	132799	126869
N3	2,44	28,500	1,0000	168973	163042
N2	2,44	38,000	1,0000	225319	219387
N1	2,44	40,000	0,8000	237183	232437
			Peso Total (kg):	917191	882611

Análise realizada por:	Data: 03/02/2014
------------------------	------------------

Fonte: PETROBRAS, 2014.

Conforme podemos observar no cálculo, este tanque poderá ser submetido a uma velocidade de vento máxima de 894,3 km/h (vazio e corroído) sem risco de tombamento.

Portanto, concluímos que neste tanque de armazenamento não haverá tombamento, pois seu costado se deformará antecipadamente.

3 CONCLUSÃO

O Programa CTA tem demonstrado imensa utilidade para os órgãos da Petrobras envolvidos com o projeto, montagem, segurança, inspeção e manutenção de Tanques de Armazenamento (Figura 11).

É com imenso orgulho que registramos este conhecimento como Tecnologia Petrobras,

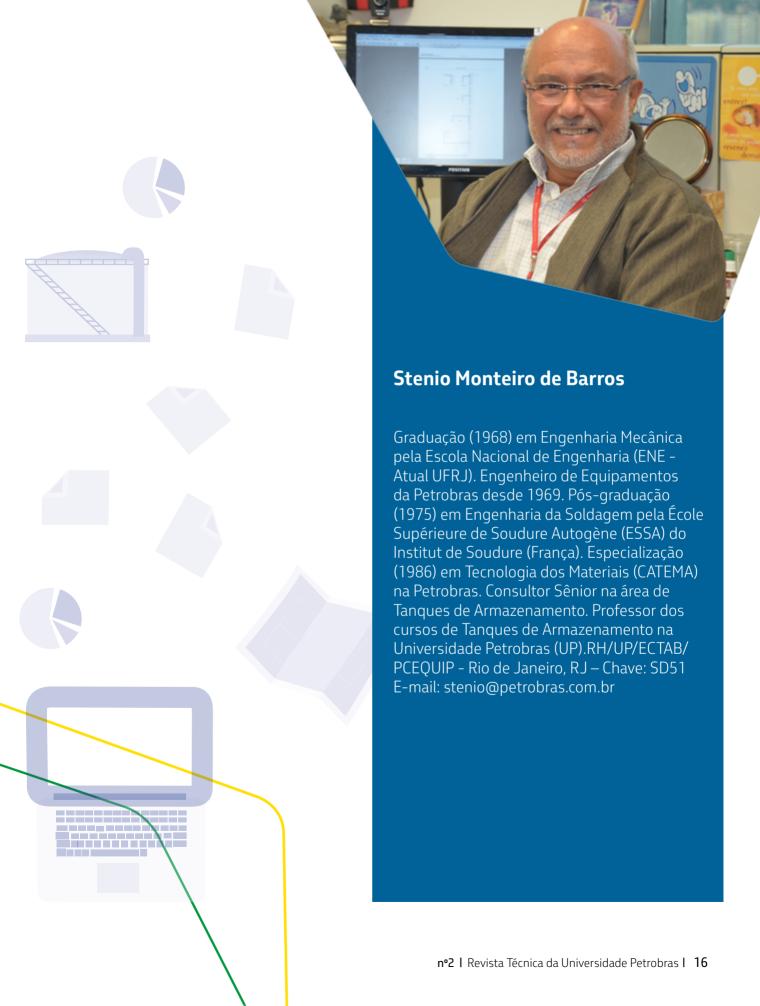
algo que nos incentiva e muito nos alegra, gratifica e inspira ao longo destes anos de trabalho envolvidos na formação técnica dos profissionais da nossa companhia.

Figura 11 – Parque de tancagem de produtos finais da RNEST: diesel, nafta e óleo combustível.

Fonte: BARROS, 2015, p. 634.

4 REFERÊNCIAS

AMERICAN PETROLEUM INSTITUTE. **Welded tanks for oil storage.** 12 ed. Washington: API, Mar. 2013. Errata 1, Jul. 2013. Addendum 1, Sep. 2014. Errata 2, Dec. 2014. API STD 650.


AMERICAN PETROLEUM INSTITUTE. **Tank inspection, repair, alteration, and reconstruction.** 5 ed. Washington: API, Nov. 2014, API STD 653.

BARROS, S. M. **Tanques de armazenamento.** Rio de Janeiro: Universidade Petrobras, 2015. 634 p. ISBN 85-85227-17-6.

PETROBRAS. Recursos Humanos. Universidade Petrobras. **Comunidades virtuais. Tanques de armazenamento.** [Rio de Janeiro]: 2015. Disponível em: http://cv.universidade. petrobras.com.br/tanques/>. Acesso em: 27 jan. 2015. Acesso exclusivo via intranet Petrobras.

PETROBRAS. CONTEC. **Projeto de tanque de armazenamento atmosférico**: rev. F. Rio de Janeiro: PETROBRAS. ETM-CORP/ST/NORTEC, jul. 2013. Errata 1, abr. 2014. Emenda 1, maio 2014. N-270 F.

PETROBRAS. Recursos Humanos. Universidade Petrobras. Escola de Ciências e Tecnologias ABAST. **CTA - Cálculo de tanque de armazenamento**. [Rio de Janeiro]: 2007. Disponível em http://cta.petrobras.com. br/cta/>. Acesso em: 27 jan. 2015. Acesso exclusivo via intranet Petrobras.

