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ABSTRACT 

 
The effect of free gas on the Electrical 
Submersible Pump (ESP) performance is 
well known. At a constant rotational speed 
and constant liquid flowrate, small amount 
of gas causes a mild head reduction when 
compared to the single phase liquid head. 
However, at higher gas rates, a drastic 
reduction in the head is observed. This 
critical condition, known as surging point, 
is a combination of liquid and gas flow 
rates that cause a maximum in the head 
performance curve. The first derivative of 
the head with respect to the liquid flow 
rate change sign as the liquid flow rate 
crosses the surging point. In several works 
on ESP two-phase flow performance, 
production conditions to the left of the 
surging region are described or reported as 
unstable operational conditions. This paper 
reviews basic concepts on stability of 
dynamical systems and shows through 
simulation that ESP oscillatory behavior 
may result from two-phase flow 
conditions. A specific drift flux 
computation code was developed to 
simulate the dynamic behavior of ESP wells 
producing without packer.  
Keywords: Electrical Submersible Pump. 
Two-Phase Flow. Oscillatory Behavior. 
Transient Simulation. 
 

 

1 INTRODUCTION 

 
The mathematical model that describes 
the dynamic behavior of fluid flows is 
generically known as “conservation laws” 

and is represented by a set of Partial 
Differential Equations (PDE). These 
equations represent mathematical 
statements of the following laws of 
physics: mass conservation, Newton’s 
second law and first law of 
thermodynamics. 
 
If a system is described by a set of 
differential equations, an equilibrium 
solution may be determined by setting all 
derivatives with respect to time equal to 
zero. This equilibrium solution is also 
known as steady-state solution, fixed 
point, critical point, and equilibrium point, 
to name a few. 
 
Several commercial steady-state two-
phase codes are used by petroleum 
engineers to calculate the “equilibrium” 
flow rate for oil wells. This is a shortcut to 
obtain the “expected” steady-state 
solution, since the dynamics of the system 
are neglected. Some of the reasons why 
Steady-state simulators are so widely used 
include relatively low cost and easy to use 
when compared to more sophisticated 
transient simulators. 
 
On the other hand, it is very important to 
distinguish between mathematical 
calculation and actual physical existence 
of a steady-state solution. An equilibrium 
solution may be obtained mathematically 
but physically may not exist or may never 
be achieved. 
 
Taking for instance a two dimensional (2D) 
homogeneous linear system, represented 
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by the following system of Ordinary 
Differential Equations (ODE): 
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which can be written in matrix notation as 
 
 Axx =& . (2) 

 
The stability of the equilibrium solution 
(origin) is based on the eigenvalues of A . 
It is asymptotically stable if, and only if, 
the eigenvalues have negative real parts 
[1]. 
 
A very useful graph that helps in the 
understanding of stability concepts is the 

phase portrait. This graph illustrates the 
relationship between solutions 

1
x  and 

2
x  

as time evolves for several different initial 
conditions. Figure 1 shows a generic phase 
portrait, which represents a stable 
equilibrium. Each path corresponds to a 
different initial condition and the arrows 
provide a visual interpretation of the 
stability. 
 
Figure 2 shows all possible phase portraits 
for 2D linear systems. The axes in this 
figure are given by: 
 

 




−=

+=

3241

41

aaaaq

aaP
, (3) 

 

 

Figure 1 - Phase Portrait – Stable Node 
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Source: AUTHOR, 2012. 
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Figure 2 - Equilibrium Solutions Stability – Linear 2D Problems 
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Source: AUTHOR (adapted from Wiens [2]), 2012. 

 

The fourth quadrant of Fig. 2 comprises 2D 
linear systems where the real part of the 
eigenvalues are negative, representing 
asymptotically stable solutions. A quick 
analysis of the graph reveals the presence 
of “neutrally stable” entities named 
centers. For this case, each different 
initial condition generates a different 
center which is not “attracted” nor 
“repelled” by the equilibrium solution. For 
all other situation, the paths are attracted 
or repelled by the equilibrium solution 
following lines or spirals. 
 
The most simple and used procedure to 
check the stability of equilibrium solutions 
in nonlinear systems is known as “Local 
Linearization Analysis” (LLA). The linear 
system given by Eq. 1 can be related to 
the nonlinear case, 
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where 
1

f  and 
2

f  are nonlinear functions. If 
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21

, xx : 
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and then Eq. 5 is substituted into Eq. 4, 
the equation of how the propagation of 
small disturbances around the equilibrium 
solution evolves, appears. Proceeding with 
Taylor expansions, neglecting second and 
high order terms, the final linearized 
system is obtained. In terms of matrix 
notation, it is given by 
 

 xJx =& , (6) 

 
where J  is the Jacobian Matrix. Similarly 
to the linear case, the stability of the 
steady-state solution would be given based 
on the eigenvalues of J , evaluated at each 
equilibrium solution. 
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It would be asymptotically stable if, and 
only if, the eigenvalues had negative real 
parts. In other words, as Eq. 6 represents 
how disturbances are propagated (in a 
“linearized” way), if they die-out – 
meaning they are attracted to the 
equilibrium solution – the equilibrium 
solution of the original non-linear system 
(Eq. 4) is also stable and exists. 
 
For real systems, this linearization process 
usually leads to easy inequalities that 
determine whether or not a solution is 
stable, which are based on steady-state 
parameters. Because of nonlinearities, 
usually these criteria are only valid in a 
very small vicinity of the equilibrium 
solution. In addition, another 
mathematical entity called “limit cycle” 
exists in the phase portrait of 2D nonlinear 
systems and is very important in 
determining if a steady state solution 
exists and if it can be achieved. 
 
A limit cycles is an isolated closed 
trajectory, meaning that its neighboring 
trajectories are not closed – they spiral 
either towards (stable) or away (unstable) 

from the limit cycle. If one of the 
variables of a limit cycle is plotted against 
time, a periodic waveform is obtained. It 
only exists in nonlinear systems and cannot 
be determined through LLA. Transient 
numerical simulation is the only way to 
confirm the presence or not of such entity. 
 
Figure 3 shows a very interesting situation 
that may occur in systems described by Eq. 
4. It represents a phase portrait containing 
a “locally” stable equilibrium solution that 
is surrounded by two limit cycles. The 
inner one is unstable while the outer, 
stable. The internal area of the unstable 
limit cycle represents the “basin of 
attraction” of this equilibrium solution. 
The equilibrium solution will only exist if 
the initial condition is placed inside its 
basin of attraction. In addition, the 
magnitude of any perturbation needs to be 
small enough to maintain the system inside 
this area. If these conditions are not 
satisfied, the limit cycle, which represents 
a cyclical behavior, will be the final state 
of the system. This example clearly shows 
that criteria based on LLA may be useless. 

 

Figure 3 - Possible Phase Portrait in a 2D Nonlinear System 
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Source: AUTHOR, 2012. 
 

 
3D and higher-order non-linear systems 
also have a different entity named 
“strange attractor”. It represents 

waveforms that do not have any 
periodicity and remain bounded within a 
definite volume. This particular situation is 
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usually called chaos. Figure 4 shows a 
well-known strange attractor named 
Lorenz attractor – the path never repeats 

itself and it remains bounded indefinitely 
[3]. 

 
 

Figure 4 - Strange Attractor [3] – Lorenz Attractor 

 

 
Source:  COMPLEX, 2012.  

 

 
Oscillatory behavior is also observed in 
fluid flow systems. Two phase flow system 
instability is a well-known problem in the 
nuclear industry [4, 5]. It may cause flow 
oscillations which can induce boiling 
crises, disturb control systems, or cause 
mechanical damage in nuclear equipment 
devices. Oil wells also face production 
instabilities that usually lead to 
operational problems to surface and 
subsurface equipment. Most importantly, 
they also cause production losses [6]. 
 
LLA may also be applied to fluid flow 
systems to determine analytical stability 
criteria. It is not trivial to derive such 
equations as the governing equations are 
Partial Differential Equations (PDE). To 
obtain easy practical criteria, several 
simplifying assumptions must be made. 

Most of them may end up reducing the 
system from PDE to ODE, to allow the use 
of LLA based on the eigenvalues of the 
Jacobian matrix. There exist other 
methods based on Laplace transformation 
and frequency domain but the resulting 
criteria are somehow equivalent. It should 
be noted that the number of criteria is 
related to the size of the Jacobian matrix. 
 
The simplifying assumptions combined with 
the nonlinearities effects may cause these 
criteria to fail in several cases, including 
some very simple systems [7]. The 
combination of steady-state simulators and 
LLA criteria may not be a good choice in 
real case situations. Transient simulation 
seems to be the most adequate method to 
determine if a well will exhibit or not an 
unstable behavior. 
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2 TWO-PHASE FLOW MODELING 

OVERVIEW 

 
2.1 THE PROBLEM BEING SOLVED 
 
Figure 5 shows the schematic of a 
production well. There are basically three 
domains in the system: casing, tubing and 

annular space. One of the extremities of 
each domain forms a shared interface 
called “junction” in this work with the 
other domains. The casing domain 
comprehends the volume between the 
reservoir and the junction, while the 
tubing and the annular space are bounded 
by the junction and each respective 
surface choke. 

 

Figure 5 - Reservoir-Casing-Tubing-Annular Space Model 
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Source: AUTHOR, 2012. 

 
Two variations are possible: (1) The ESP 
may be located in front of the perforations 
(casing not included in the solution 
domain) and (2) ESP in front of the 
perforations and the assumption that only 
gas is separated – all liquid from reservoir 
goes inside the tubing and the gas 
separated to the annular space vanishes 
(casing and annular space not included in 
the solution domain). 
 
Independent of the scenario, each domain 
must obey the conservation laws and the 

junction must receive an appropriate 
treatment to correctly model the problem, 
including the consideration of gas and 
liquid mass conservation. 
 

2.1.1 Equations and Numerical Solution 

 

The model is based on the drift-flux 
approach [8], assuming isothermal flow 
and no mass transfer between phases: 
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 Slg VVV =− , (10) 

 
where Eqs. 7 and 8 represent, 
respectively, gas and liquid mass 
conservation, Eq. 9 the mixture 
momentum conservation equation 
(convective terms were neglected), and 
Eq. 10 the slip velocity closure 
relationship. 
 
Closure relationships must be provided for 
the slip velocity (

S
V ) and for the two-

phase friction term (
wtφ ). The slip velocity 

is obtained using the traditional drift-flux 
model 
 

 ( ) dslsg

sg

VVVC

V

++
=

0

α , (11) 

 
where 

0
C  is the distribution parameter and 

dV  the drift velocity. These two 

parameters are obtained from published 
correlations. For co-current upward flow, a 
modification in the correlation of 
Woldesemayat and Ghajar [9] was 
proposed while for co-current downward 
flow Ishii and Hibiki [10] was used. 
Because of the lack of correlations to 
model counter-current flow, a linear 
interpolation procedure between co-
current upward/downward has been 
developed by Vieira [7]. 
 
The discretization of the equations was 
done using a fully implicit first-order 
finite-difference method on a staggered 
grid [11], with pressure and void fractions 

defined at the cell centers and velocities 
at cell edges, using an upwind scheme. 
Eqs. 7-10 was discretized in each domain, 
with some particular adaptations such as 
the use of equivalent and hydraulic 
diameters for annular geometry. 
 
The reservoir was modeled as a source of 
liquid and gas, following linear 
relationships. As the chokes may be under 
single or two-phase flow conditions, 
Sachdeva [12] model was used. A proper 
description of the “junction” was done, 
assuring gas and liquid mass conservation 
as well as pressure continuity [7]. 
 
2.1.2 Gas Separation Models 

 

The bottomhole natural gas separation 
efficiency was calculated using Alhanati  
model [13]. This model assumes that all 
liquid coming from the casing goes through 
the pump and the liquid inside the annular 
space is static. These premises do not 
satisfy the reality of this work since the 
liquid within the annular space may be 
flowing upward or downward. Because of 
the lack of correlations, a modification in 
Alhanati’s work was proposed [7]. 
 
Figure 6 shows the results of the proposed 
modification for some arbitrary condition. 
For the case when the annular liquid flow 
rate is zero, the correlation represents 
Alhanati’s original model itself. If the 
liquid is getting into the annular space 
(positive flow rate) the efficiency is higher 
since it drags more gas. On the other 
hand, if the annular liquid is going inside 
the intake (negative flow rate) more gas is 
dragged into the pump, reducing the 
separation efficiency. 
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Figure 6 - Natural Casing-Annulus Separation Efficiency – Pumped Well 
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Source: AUTHOR, 2012. 

 
A simplified rotary separator based in 
Alhanati’s [13] rotary separator model can 
also be used. Figure 7 shows a typical 
curve for the global efficiency of this 
equipment, for some arbitrary conditions. 
As suggested by Alhanati, the existence of 
operational conditions in which rotary 
separators are not effective was 
considered in the simplified model. 
 

2.1.3 Pump Model 

 
Electrical Submersible Pumps are widely 
utilized in the oil industry. It is a 
multistage vertical pump with a diffuser 
casing that can handle large liquid 
volumes. In an artificial lift system, the 
pump is installed within a cased hole well 
and produces the reservoir while staying 
“submersed” in the fluid. 
 

Free gas directly impacts the pump curve 
performance deteoriating its ability to lift 
liquids. The degree of head deterioration 
varies from a simple reduction in 
performance to more severe problems 
such as surging and gas-lock. 
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Figure 7 - Generic Rotary Separator Efficiency Curve 
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Source: AUTHOR, 2012. 

 

The pump model used in this work is 
proposed based on the works of Duran [14] 
and Carvalho et al. [15]. The calculation is 
not done stage by stage; instead, it is 
considered an average total pressure 
increment. Figure 8 shows a typical curve 
performance for some arbitrary intake 

conditions for different constant gas flow 
rates as described by Vieira [7]. The stable 
operational envelope of the pump is 
assumed to be the region limited by the 
surging boundary, the water curve 
performance and the no-pressure 
increment horizontal line. 

 

Figure 8 - Two-Phase Pump Performance Curve 
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3 APPLICATION AND DISCUSSION 

 
3.1 EXAMPLE 1: NEITHER CASING NOR 
ANNULAR SPACE INCLUDED IN THE 
SOLUTION DOMAIN: UNSTABLE EXAMPLE 
 
This example considers a pump equipped 
with a rotary separator. The pump 
maximum flow rate is 8,640 B/D and it is 
located in front of the perforations. The 
separator is under-sized as its maximum 

operational liquid flow rate is about 1,250 
B/D. For this scenario, all liquid from 
reservoir goes to the pump and the gas 
separated to the annular space disappears. 
 
The gas split is determined through 
Alhanati’s model previously described. The 
fluids considered in this simulation are air 
and water. Figure 9 shows the nodal 
analysis under these premises. 

 

Figure 9 - Nodal Analysis – Example 1 
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Source: AUTHOR, 2012. 

 

 
One of the widely used instability criterion 
derived from LLA is [16]: 
 

 
.

.

.

.

eq

req

eq

avail

dQ

dP

dQ

dP
> . (12) 

 
According to this criterion, the solution is 
unstable if, at the equilibrium flow rate, 
the derivative of the available pressure is 
greater than the required pressure. 
Equation 12 does not guarantee that the 

equilibrium solution in Fig. 9 is unstable. It 
should be noted that this is just one 
criterion among several others that may 
exist. For complex systems like this 
example, the other criteria are very 
difficult to obtain, even using simplifying 
assumptions. 
 
Figure 10 shows the result of transient 
simulation for some initial condition. The 
equilibrium solution is unstable and no 
steady-state is obtained. The pump 
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presents a high frequency oscillatory 
behavior. An interesting observation is that 
the surface flow rates show small 
amplitudes while at the pump they are in 
the order of 1,500 B/D. This is not a 

desirable operational condition for an ESP, 
especially for a pump with floating 
impellers. In a real well, probably the 
protective relay would shut down the 
equipment.

 

Figure 10 - Transient Solution – Example 1 – Liquid Flow Rates 
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Source: AUTHOR, 2012. 

 

 
3.2 EXAMPLE 2: TUBING AND ANNULAR 
SPACE INCLUDED IN THE SOLUTION 
DOMAIN: UNSTABLE EXAMPLE 
 
The objective of this example is to 
determine the influence of the annular 
space dynamics in the unstable behavior of 
Example 1. To solve this problem under 
steady-state conditions, the first thing 
assumed is that the annular space has 
reached a constant dynamic level (no 
liquid moving inside the annular space) 
and thus all liquid coming from reservoir 
goes into the pump. 

 
Thus, the nodal analysis is the same as the 
one shown in Fig. 9. Figures 11 and 12 
show the result of the transient simulation 
for some initial condition. 
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Figure 11 - Transient Solution – Example 2 – Tubing and Reservoir Liquid Flow Rates 
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Source:  AUTHOR, 2012. 

 
The well exhibits an oscillatory behavior, 
confirming the previous result. It should be 
noted that the fluctuations at surface are 
even smaller while the amplitudes 

downhole have increased. In addition, the 
solution shows more evidence of a chaotic 
behavior. 

 
Figure 12 - Transient Solution – Example 2 – Annular Space and Reservoir Liquid Flow Rates 
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3.3 EXAMPLE 3: TUBING AND ANNULAR 
SPACE INCLUDED IN THE SOLUTION 
DOMAIN: STABLE EXAMPLE 
 

The only difference between this example 
and the last one is the tubing diameter. In 
this example, the tubing diameter is bigger 
than the one used in Example 2. Figure 13 
shows the nodal analysis. 

 
 

Figure 13 - Nodal Analysis – Example 3 
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Source: AUTHOR, 2012. 

 
Figures 14 and 15 show the results of the 
transient simulations. The steady-state 
condition is reached with a constant 
dynamic level in the annular space, since 
no liquid flows in this domain after 5,000 
seconds. 
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Figure 14 - Transient Solution – Example 3 – Tubing and Reservoir Liquid Flow Rates 
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Source: AUTHOR, 2012. 

 

Figure 15 - Transient Solution – Example 3 – Annular Space and Reservoir Liquid Flow Rates 
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Source: AUTHOR, 2012. 

 

It should be noted that the model 
developed in this work is also able to 
simulate the classic casing heading 
(natural flow wells without packers). As 

the objective of this work is to simulate 
wells equipped with ESP, no examples for 
this situation were shown and can be 
found elsewhere [7]. 
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4 CONCLUSIONS 

 
1. There are different attractors in multi-
dimensional non-linear systems, such as: 
equilibrium solutions, limit cycles and 
strange attractors. LLA provides limited 
information regarding a tiny piece of a big 
puzzle and depending on the initial 
condition, the equilibrium solution may 
never be reached, even though it is stable. 
Only numerical simulations can really 
determine whether or not a dynamic 
system is stable. 

 
 
2. A two-phase flow code based on the 
drift flux approach was developed in order 
to simulate well configurations without 
packers. Under this condition, bottom-hole 
gas segregation and storage effects were 
considered. For wells equipped with ESP, 
the two-phase flow pump performance as 
well as separation models were used. Due 
to the non-existence of models for some 
conditions, some modifications in similar 
models were proposed. 
 

 
 

 

NOMENCLATURE 

 

ia  = Constants in Matrix A  

A  = Coefficient matrix 

0
C  = Distribution parameter 

D  = Dimension 

( )
21

, xxfi
= Generic nonlinear function 

J  = Jacobian Matrix  

P  = Pressure or trace of a 2 by 2 matrix 
q  = 2 by 2 matrix determinant 

Q  = Volumetric flow rate 

t  = Time 

V  = Velocity 

dV  = Drift velocity 

SV  = Slip Velocity 

sgV  = Superficial gas velocity 

slV  = Superficial liquid velocity 

ix&  = First derivative of 
ix  

x  = Column vector of variables 
i

x  

x&  = First derivative of column vector x  
x  = Equilibrium solution 

z  = Position 
 
Greek letters: 

 

α  = Gas void fraction  

δ  = Disturbance 

θ  = Angle with horizontal 

ρ  = Density 

wt
φ  = Two-phase friction loss gradient 

 
Subscript: 

 

.avail  = Available 

.eq  = Equilibrium 

g  = Gas 

l  = Liquid 

.req  = Required 
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